metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(N,N-dimethylformamide- κO)bis(1-methylimidazole-2-carbaldehyde oximato- $\kappa^2 N$,O)manganese(III) perchlorate

Feng Wang,^a Jianming Zhang,^a* Qirong Wang^b and Shiving Huang^c

^aCollege of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China, ^bSchool of Chemistry and Materials Science, Xiaogan University, Xiaogan, Hubei 432000, People's Republic of China, and ^cHubei Polytechnic Institute, Xiaogan, Hubei 432000, People's Republic of China Correspondence e-mail: wangfeng9802@126.com

Received 16 October 2008; accepted 17 October 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.056; wR factor = 0.158; data-to-parameter ratio = 13.1.

In the title compound, $[Mn(C_5H_6N_3O)_2(C_3H_7NO)]ClO_4$, the Mn^{III} atom lies on the inversion centre of the centrosymmetric complex cation and has a distorted octahedral coordination geometry, formed by two N atoms and two O atoms from two 1-methylimidazole-2-carbaldehyde oximate ligands and two O atoms from two dimethylformamide ligands. Perchlorate acts as a counterion to balance the charge. The crystal structure of the title compound is stabilized by $C-H \cdots O$ hydrogenbonding interactions.

Related literature

For related literature, see: Miyasaka et al. (2005); Saitoh et al. (2007).

Experimental

Crystal data

[Mn(C5H6N3O)2(C3H7NO)]ClO4 $\gamma = 80.471 \ (16)^{\circ}$ $M_r = 548.84$ V = 1178.7 (3) Å³ Triclinic, $P\overline{1}$ Z = 2a = 7.6158 (11) Å Mo $K\alpha$ radiation b = 12.324 (2) Å $\mu = 0.73 \text{ mm}^{-1}$ c = 12.8600 (16) Å T = 298 (2) K $\alpha = 82.841 (10)^{\circ}$ $0.23 \times 0.20 \times 0.10 \text{ mm}$ $\beta = 85.273 (11)^{\circ}$

Data collection

Bruker SMART CCD area-detector 939/ measured refle	ctions
diffractometer 4101 independent re	flections
Absorption correction: multi-scan 3191 reflections with	$I > 2\sigma(I)$
$(SADABS; Bruker, 2001)$ $R_{int} = 0.039$	
$T_{\min} = 0.850, \ T_{\max} = 0.930$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	313 parameters
$wR(F^2) = 0.158$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
4101 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Mn1-O1	1.886 (3)	Mn1-N2	2.002 (3)
Mn1-O2	1.893 (3)	Mn1-O4	2.204 (3)
Mn1-N4	1.997 (3)	Mn1-O3	2.443 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O7^{i}$	0.93	2.54	3.433 (6)	161
$C5-H5\cdots O7^{ii}$	0.93	2.60	3.402 (6)	145
$C12-H12A\cdots O8^{ii}$	0.96	2.49	3.399 (6)	157
C13−H13C···O5 ⁱⁱⁱ	0.96	2.40	3.261 (7)	150
C14−H14···O6	0.93	2.59	3.477 (6)	161

Symmetry codes: (i) x - 1, y + 1, z; (ii) x, y + 1, z; (iii) -x + 2, -y + 1, -z + 2.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2654).

References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Miyasaka, H., Saitoh, A., Yanagida, S., Kachi-Terajima, C., Sugiura, K. & Yamashita, M. (2005). Inorg. Chim. Acta, 358, 3525-3535.
- Saitoh, A., Miyasaka, H., Yamashita, M. & Clerac, R. (2007). J. Mater. Chem. 17. 2002-2012.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, m1462 [doi:10.1107/S1600536808034016]

Bis(*N*,*N*-dimethylformamide- κO)bis(1-methylimidazole-2-carbaldehyde oximato- $\kappa^2 N$,*O*)manganese(III) perchlorate

F. Wang, J. Zhang, Q. Wang and S. Huang

Comment

The metal complexes with the 2-((hydroxyimino)methyl)-1-methylimidazole and 2-((hydroxyimino)methyl)-1-ethylimidazole had some good activities (Miyasaka *et al.*, 2005; Saitoh *et al.*, 2007). Herein, we report the crystal structure of such a novel compound, $[Mn(C_5H_6N_3O)_2(C_3H_7NO)](ClO_4)$, (I).

The molecular structure of (I) is shown in Fig.1. The Mn atom lying on the inversion center of the centrosymmetric cation has a distorted octahedral geometry and is coordinated by two N atoms and two O atoms (O3,O4) from two 2-((hydroxyimino)methyl)-1-methylimidazole ligands, which lie in the equatorial plane, with the torsional angle O1—N2—O2—N4 = -2.19°, and two O atoms from two *N'*,*N*-dimthylformamide molecules occupy the axial sites, which is nearly linear [O3—Mn—O4 = 176.62 (10)°] (Table 1). The distance from Mn to the equatorial plane is 0.0828 (15) Å. O3 and O4 are far away from the equatorial plane, with the mean distance 2.32 Å. As shown in Fig. 2, an organic cation layer is linked to an inorganic anionic layer through a series of C—H…O hydrogen bonding interactions (Table 2). In the structure, there are not π - π interactions.

Experimental

 $[Mn(C_5H_6N_3O)_2 (C_3H_7NO)](ClO_4)$ was prepared as followings: to a solution of 2-((Hydroxyimino)methyl)-1-methylimidazole 0.50 g(4 mmol) in DMF(25 mL) and triethylamine (0.05 mL) was added Mn(ClO_4)₂ (0.724 g, 2.0 mmol). After the mixture was stirred for a one hour, the solution was filtered. The filtrate was kept for several days at ambient temperature, and brown block crystals were obtained.

Refinement

H atoms on C atoms were placed in geometrically idealized positions and refined in riding model, with C–H = 0.93 or 0.96 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing ellipsoids at the 50% probability level.

Fig. 2. The hydrogen-bonding structure of the molecular packing diagram of (I).

 $Bis(N,N-dimethyl formamide-\kappa O) bis(1-methylimidazole-2-\ carbaldehyde\ oximato-\kappa^2 N,O) manganese(III)\ perchlorate$

Crystal data

[Mn(C5H6N3O)2(C3H7NO)]ClO4	Z = 2
$M_r = 548.84$	$F_{000} = 568$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.546 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.6158 (11) Å	Cell parameters from 2239 reflections
b = 12.324 (2) Å	$\theta = 2.5 - 22.4^{\circ}$
c = 12.8600 (16) Å	$\mu = 0.73 \text{ mm}^{-1}$
$\alpha = 82.841 \ (10)^{\circ}$	T = 298 (2) K
$\beta = 85.273 \ (11)^{\circ}$	Block, brown
$\gamma = 80.471 \ (16)^{\circ}$	$0.23 \times 0.20 \times 0.10 \text{ mm}$
$V = 1178.7 (3) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	4101 independent reflections
Radiation source: fine-focus sealed tube	3191 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.039$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -8 \rightarrow 9$
$T_{\min} = 0.850, T_{\max} = 0.930$	$k = -14 \rightarrow 12$
9397 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained

$wR(F^2) = 0.158$	$w = 1/[\sigma^2(F_o^2) + (0.0845P)^2 + 0.2454P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\text{max}} = 0.002$
4101 reflections	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
313 parameters	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1.				• •	. 1.	1 .	,	182	ź١
Fractional	atomic	coordinates	and 1	sotron	IC OF P	auwalent	isotron	10 dis	nlacement	narameters	IA^{-}	- 1
i ractionai	aiomic	coorainaico	unu n	5011 OP		juivaieni	1501100	ic and	pracement	parameters	(11	/

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Mn1	0.67156 (7)	0.67997 (4)	0.75744 (4)	0.0366 (2)
C1	0.3414 (5)	0.8512 (4)	0.7017 (3)	0.0513 (11)
H1	0.2579	0.8049	0.7250	0.062*
C2	0.3042 (6)	0.9582 (4)	0.6627 (3)	0.0579 (12)
H2	0.1912	0.9989	0.6537	0.070*
C3	0.5955 (6)	0.9116 (3)	0.6626 (3)	0.0446 (10)
C4	0.4845 (7)	1.1121 (3)	0.5958 (4)	0.0667 (14)
H4A	0.5257	1.1481	0.6491	0.100*
H4B	0.3719	1.1521	0.5742	0.100*
H4C	0.5699	1.1104	0.5366	0.100*
C5	0.7840 (6)	0.9159 (4)	0.6449 (3)	0.0529 (11)
H5	0.8146	0.9804	0.6076	0.063*
C6	0.9974 (5)	0.5219 (3)	0.8403 (3)	0.0389 (9)
Н6	1.0818	0.5646	0.8096	0.047*
C7	1.0311 (5)	0.4261 (3)	0.9042 (3)	0.0415 (9)
H7	1.1425	0.3912	0.9251	0.050*
C8	0.7428 (5)	0.4639 (3)	0.8846 (3)	0.0358 (9)
C9	0.8461 (6)	0.2892 (3)	1.0015 (3)	0.0533 (11)
H9A	0.7266	0.2973	1.0330	0.080*
H9B	0.9294	0.2769	1.0555	0.080*
Н9С	0.8660	0.2272	0.9612	0.080*
C10	0.5576 (5)	0.4523 (3)	0.8923 (3)	0.0462 (10)
H10	0.5274	0.3893	0.9328	0.055*
C11	0.6945 (5)	0.8367 (3)	0.9405 (3)	0.0431 (10)
H11	0.7584	0.8692	0.8836	0.052*

C12	0.7615 (6)	0.9785 (4)	1.0387 (3)	0.0573 (12)
H12A	0.8234	1.0007	0.9734	0.086*
H12B	0.8445	0.9599	1.0928	0.086*
H12C	0.6711	1.0384	1.0570	0.086*
C13	0.5781 (6)	0.8394 (4)	1.1206 (3)	0.0624 (13)
H13A	0.5095	0.7868	1.1020	0.094*
H13B	0.4993	0.8994	1.1488	0.094*
H13C	0.6591	0.8038	1.1724	0.094*
C14	0.7324 (5)	0.5286 (4)	0.5742 (3)	0.0497 (11)
H14	0.7438	0.4704	0.6278	0.060*
C15	0.7250 (11)	0.5901 (4)	0.3915 (4)	0.109 (3)
H15A	0.6469	0.6535	0.4141	0.164*
H15B	0.6748	0.5641	0.3350	0.164*
H15C	0.8393	0.6104	0.3680	0.164*
C16	0.7802 (8)	0.3905 (4)	0.4514 (4)	0.0720 (15)
H16A	0.7721	0.3403	0.5143	0.108*
H16B	0.8976	0.3759	0.4177	0.108*
H16C	0.6935	0.3805	0.4047	0.108*
N1	0.4629 (5)	0.9964 (3)	0.6388 (3)	0.0507 (9)
N2	0.5233 (4)	0.8215 (3)	0.7014 (2)	0.0416 (8)
N3	0.9150 (5)	0.8411 (3)	0.6746 (3)	0.0547 (9)
N4	0.8164 (4)	0.5454 (2)	0.8285 (2)	0.0355 (7)
N5	0.8711 (4)	0.3896 (3)	0.9328 (2)	0.0382 (7)
N6	0.4281 (4)	0.5195 (3)	0.8494 (3)	0.0487 (8)
N7	0.6785 (4)	0.8821 (3)	1.0277 (2)	0.0429 (8)
N8	0.7459 (5)	0.5038 (3)	0.4778 (2)	0.0471 (8)
01	0.8785 (3)	0.7471 (2)	0.7320 (2)	0.0478 (7)
O2	0.4629 (3)	0.6147 (2)	0.7914 (2)	0.0508 (7)
O3	0.6303 (4)	0.7528 (2)	0.9275 (2)	0.0523 (7)
O4	0.7056 (4)	0.6244 (2)	0.5996 (2)	0.0528 (7)
Cl1	0.90018 (14)	0.19042 (8)	0.72382 (8)	0.0490 (3)
05	1.0504 (6)	0.2250 (4)	0.7606 (4)	0.1166 (16)
O6	0.7487 (5)	0.2738 (3)	0.7265 (3)	0.0903 (12)
O7	0.9418 (5)	0.1610 (3)	0.6206 (2)	0.0731 (10)
O8	0.8620 (5)	0.0947 (3)	0.7917 (3)	0.0839 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0330 (3)	0.0354 (4)	0.0413 (3)	-0.0012 (2)	-0.0041 (2)	-0.0077 (3)
C1	0.038 (2)	0.058 (3)	0.055 (2)	0.004 (2)	-0.0040 (18)	-0.010 (2)
C2	0.048 (3)	0.065 (3)	0.053 (2)	0.019 (2)	-0.007 (2)	-0.009 (2)
C3	0.053 (2)	0.041 (2)	0.042 (2)	0.002 (2)	-0.0120 (18)	-0.0156 (18)
C4	0.101 (4)	0.037 (3)	0.058 (3)	0.010 (2)	-0.026 (3)	-0.006 (2)
C5	0.060 (3)	0.038 (2)	0.063 (3)	-0.015 (2)	-0.010 (2)	0.000 (2)
C6	0.032 (2)	0.040 (2)	0.045 (2)	-0.0012 (17)	-0.0015 (16)	-0.0104 (18)
C7	0.030 (2)	0.044 (2)	0.050 (2)	-0.0010 (18)	-0.0050 (17)	-0.0114 (19)
C8	0.033 (2)	0.032 (2)	0.0417 (19)	0.0022 (16)	-0.0043 (15)	-0.0125 (17)

C9	0.052 (3)	0.041 (2)	0.061 (3)	-0.002 (2)	0.000 (2)	0.006 (2)
C10	0.041 (2)	0.039 (2)	0.061 (2)	-0.0122 (19)	-0.0018 (19)	-0.008 (2)
C11	0.040 (2)	0.046 (3)	0.043 (2)	0.0006 (19)	-0.0045 (16)	-0.0091 (19)
C12	0.066 (3)	0.053 (3)	0.054 (2)	-0.015 (2)	-0.007 (2)	-0.006 (2)
C13	0.071 (3)	0.075 (3)	0.046 (2)	-0.026 (3)	0.008 (2)	-0.014 (2)
C14	0.051 (2)	0.055 (3)	0.042 (2)	-0.003 (2)	-0.0034 (18)	-0.008 (2)
C15	0.214 (8)	0.056 (4)	0.049 (3)	-0.001 (4)	0.007 (4)	-0.009 (3)
C16	0.108 (4)	0.045 (3)	0.059 (3)	0.011 (3)	-0.011 (3)	-0.016 (2)
N1	0.062 (2)	0.042 (2)	0.0467 (19)	0.0087 (18)	-0.0146 (16)	-0.0158 (16)
N2	0.0407 (19)	0.040 (2)	0.0439 (17)	0.0022 (15)	-0.0072 (14)	-0.0124 (15)
N3	0.050 (2)	0.051 (2)	0.065 (2)	-0.0155 (19)	-0.0046 (17)	-0.0029 (19)
N4	0.0321 (16)	0.0362 (18)	0.0394 (16)	-0.0043 (14)	-0.0039 (13)	-0.0098 (14)
N5	0.0349 (17)	0.0350 (18)	0.0441 (17)	-0.0014 (14)	-0.0020 (13)	-0.0080 (14)
N6	0.0378 (19)	0.047 (2)	0.063 (2)	-0.0114 (17)	-0.0043 (16)	-0.0048 (18)
N7	0.0455 (19)	0.047 (2)	0.0383 (17)	-0.0110 (16)	-0.0037 (14)	-0.0052 (15)
N8	0.063 (2)	0.039 (2)	0.0374 (17)	-0.0003 (17)	-0.0038 (15)	-0.0041 (15)
01	0.0418 (16)	0.0430 (17)	0.0573 (16)	-0.0054 (13)	-0.0033 (12)	-0.0020 (14)
O2	0.0359 (15)	0.0536 (19)	0.0620 (17)	-0.0066 (13)	-0.0089 (13)	0.0001 (15)
O3	0.0614 (19)	0.0491 (18)	0.0478 (16)	-0.0076 (15)	-0.0047 (13)	-0.0112 (14)
O4	0.071 (2)	0.0438 (17)	0.0434 (15)	-0.0033 (15)	-0.0003 (13)	-0.0156 (13)
Cl1	0.0570 (7)	0.0428 (6)	0.0473 (5)	-0.0056 (5)	-0.0017 (4)	-0.0092 (5)
O5	0.098 (3)	0.150 (4)	0.124 (3)	-0.060 (3)	-0.011 (3)	-0.046 (3)
O6	0.101 (3)	0.067 (2)	0.088 (2)	0.027 (2)	0.002 (2)	-0.008 (2)
O7	0.102 (3)	0.062 (2)	0.0477 (17)	0.0068 (19)	0.0013 (17)	-0.0089 (15)
O8	0.113 (3)	0.067 (2)	0.064 (2)	-0.015 (2)	0.0083 (19)	0.0157 (18)

Geometric parameters (Å, °)

Mn1—O1	1.886 (3)	С9—Н9С	0.9600
Mn1—O2	1.893 (3)	C10—N6	1.292 (5)
Mn1—N4	1.997 (3)	C10—H10	0.9300
Mn1—N2	2.002 (3)	C11—O3	1.249 (5)
Mn1—O4	2.204 (3)	C11—N7	1.304 (5)
Mn1—O3	2.443 (3)	C11—H11	0.9300
C1—C2	1.344 (6)	C12—N7	1.461 (5)
C1—N2	1.372 (5)	C12—H12A	0.9600
С1—Н1	0.9300	C12—H12B	0.9600
C2—N1	1.367 (6)	C12—H12C	0.9600
С2—Н2	0.9300	C13—N7	1.455 (5)
C3—N2	1.343 (5)	C13—H13A	0.9600
C3—N1	1.352 (5)	C13—H13B	0.9600
C3—C5	1.443 (6)	C13—H13C	0.9600
C4—N1	1.493 (5)	C14—O4	1.244 (5)
C4—H4A	0.9600	C14—N8	1.306 (5)
C4—H4B	0.9600	C14—H14	0.9300
C4—H4C	0.9600	C15—N8	1.437 (6)
C5—N3	1.289 (5)	C15—H15A	0.9600
С5—Н5	0.9300	C15—H15B	0.9600
C6—C7	1.351 (5)	C15—H15C	0.9600

C6—N4	1.377 (5)	C16—N8	1.455 (5)
С6—Н6	0.9300	C16—H16A	0.9600
C7—N5	1.375 (5)	C16—H16B	0.9600
С7—Н7	0.9300	C16—H16C	0.9600
C8—N4	1.335 (5)	N3—O1	1.350 (4)
C8—N5	1.356 (4)	N6—O2	1.362 (4)
C8—C10	1.436 (5)	Cl1—O6	1.413 (3)
C9—N5	1.458 (5)	Cl1—O7	1.416 (3)
С9—Н9А	0.9600	Cl1—O5	1.420 (4)
С9—Н9В	0.9600	Cl1—O8	1.433 (3)
O1—Mn1—O2	176.56 (11)	H12A—C12—H12B	109.5
O1—Mn1—N4	89.45 (12)	N7—C12—H12C	109.5
O2—Mn1—N4	89.88 (12)	H12A—C12—H12C	109.5
O1—Mn1—N2	90.13 (13)	H12B—C12—H12C	109.5
O2—Mn1—N2	90.18 (13)	N7—C13—H13A	109.5
N4—Mn1—N2	173.75 (11)	N7—C13—H13B	109.5
O1—Mn1—O4	91.23 (11)	H13A—C13—H13B	109.5
O2—Mn1—O4	92.20 (12)	N7—C13—H13C	109.5
N4—Mn1—O4	95.89 (11)	H13A—C13—H13C	109.5
N2—Mn1—O4	90.35 (11)	H13B—C13—H13C	109.5
O1—Mn1—O3	87.46 (11)	O4—C14—N8	124.9 (4)
O2—Mn1—O3	89.13 (11)	O4—C14—H14	117.6
N4—Mn1—O3	87.21 (10)	N8—C14—H14	117.6
N2—Mn1—O3	86.54 (10)	N8—C15—H15A	109.5
O4—Mn1—O3	176.62 (10)	N8—C15—H15B	109.5
C2—C1—N2	108.6 (4)	H15A—C15—H15B	109.5
C2—C1—H1	125.7	N8—C15—H15C	109.5
N2—C1—H1	125.7	H15A—C15—H15C	109.5
C1—C2—N1	107.5 (4)	H15B—C15—H15C	109.5
C1—C2—H2	126.3	N8—C16—H16A	109.5
N1—C2—H2	126.3	N8—C16—H16B	109.5
N2—C3—N1	108.9 (4)	H16A—C16—H16B	109.5
N2—C3—C5	125.5 (4)	N8—C16—H16C	109.5
N1—C3—C5	125.5 (4)	H16A—C16—H16C	109.5
N1—C4—H4A	109.5	H16B—C16—H16C	109.5
N1—C4—H4B	109.5	C3—N1—C2	107.8 (4)
H4A—C4—H4B	109.5	C3—N1—C4	126.4 (4)
N1—C4—H4C	109.5	C2—N1—C4	125.7 (4)
H4A—C4—H4C	109.5	C3—N2—C1	107.2 (4)
H4B—C4—H4C	109.5	C3—N2—Mn1	122.2 (3)
N3—C5—C3	127.9 (4)	C1—N2—Mn1	130.4 (3)
N3—C5—H5	116.1	C5—N3—O1	118.6 (3)
С3—С5—Н5	116.1	C8—N4—C6	107.2 (3)
C7—C6—N4	108.3 (3)	C8—N4—Mn1	122.6 (2)
С7—С6—Н6	125.9	C6—N4—Mn1	129.8 (3)
N4—C6—H6	125.9	C8—N5—C7	107.1 (3)
C6—C7—N5	107.7 (3)	C8—N5—C9	127.0 (3)
С6—С7—Н7	126.2	C7—N5—C9	125.9 (3)
N5—C7—H7	126.2	C10—N6—O2	119.1 (3)

N4—C8—N5	109.7 (3)	C11—N7—C13	122.0 (4)
N4—C8—C10	126.5 (3)	C11—N7—C12	122.2 (3)
N5-C8-C10	123.7 (4)	C13—N7—C12	115.8 (3)
N5—C9—H9A	109.5	C14—N8—C15	120.2 (4)
N5—C9—H9B	109.5	C14—N8—C16	123.1 (4)
Н9А—С9—Н9В	109.5	C15—N8—C16	116.7 (3)
N5—C9—H9C	109.5	N3—O1—Mn1	133.5 (2)
Н9А—С9—Н9С	109.5	N6—O2—Mn1	134.0 (2)
Н9В—С9—Н9С	109.5	C11—O3—Mn1	120.4 (2)
N6—C10—C8	127.3 (4)	C14—O4—Mn1	129.3 (3)
N6—C10—H10	116.3	O6—Cl1—O7	110.6 (2)
C8—C10—H10	116.3	O6—Cl1—O5	111.4 (3)
O3—C11—N7	124.9 (4)	O7—Cl1—O5	109.5 (2)
O3—C11—H11	117.6	O6—Cl1—O8	108.6 (2)
N7—C11—H11	117.6	O7—Cl1—O8	108.9 (2)
N7—C12—H12A	109.5	O5—Cl1—O8	107.7 (3)
N7—C12—H12B	109.5		
N2-C1-C2-N1	-0.6 (4)	O3—Mn1—N4—C8	81.1 (3)
N2—C3—C5—N3	-9.7 (7)	O1—Mn1—N4—C6	-3.9 (3)
N1—C3—C5—N3	173.1 (4)	O2—Mn1—N4—C6	179.5 (3)
N4—C6—C7—N5	-0.2 (4)	O4—Mn1—N4—C6	87.3 (3)
N4—C8—C10—N6	-2.3 (6)	O3—Mn1—N4—C6	-91.4 (3)
N5-C8-C10-N6	179.7 (4)	N4—C8—N5—C7	-0.6 (4)
N2—C3—N1—C2	-0.3 (4)	C10—C8—N5—C7	177.7 (3)
C5-C3-N1-C2	177.2 (4)	N4—C8—N5—C9	179.7 (3)
N2—C3—N1—C4	178.6 (3)	C10—C8—N5—C9	-1.9 (5)
C5—C3—N1—C4	-3.8 (6)	C6—C7—N5—C8	0.5 (4)
C1—C2—N1—C3	0.6 (4)	C6—C7—N5—C9	-179.9 (3)
C1—C2—N1—C4	-178.4 (3)	C8—C10—N6—O2	-1.7 (6)
N1—C3—N2—C1	0.0 (4)	O3—C11—N7—C13	-1.3 (6)
C5—C3—N2—C1	-177.6 (3)	O3—C11—N7—C12	178.2 (4)
N1—C3—N2—Mn1	-175.1 (2)	O4—C14—N8—C15	-1.6 (7)
C5—C3—N2—Mn1	7.4 (5)	O4—C14—N8—C16	179.0 (4)
C2-C1-N2-C3	0.4 (4)	C5—N3—O1—Mn1	16.5 (5)
C2—C1—N2—Mn1	174.9 (3)	N4—Mn1—O1—N3	171.2 (3)
O1—Mn1—N2—C3	2.4 (3)	N2—Mn1—O1—N3	-15.0 (3)
O2—Mn1—N2—C3	178.9 (3)	O3—Mn1—O1—N3	-101.5 (3)
O4—Mn1—N2—C3	-88.9 (3)	C10—N6—O2—Mn1	-1.6 (5)
O3—Mn1—N2—C3	89.8 (3)	N4—Mn1—O2—N6	5.5 (3)
O1—Mn1—N2—C1	-171.4 (3)	N2—Mn1—O2—N6	-168.3 (3)
O2—Mn1—N2—C1	5.1 (3)	O4—Mn1—O2—N6	101.4 (3)
O4—Mn1—N2—C1	97.3 (3)	O3—Mn1—O2—N6	-81.7 (3)
O3—Mn1—N2—C1	-84.0 (3)	N7—C11—O3—Mn1	179.5 (3)
C3—C5—N3—O1	-2.1 (6)	O1—Mn1—O3—C11	25.0 (3)
N5-C8-N4-C6	0.5 (4)	O2—Mn1—O3—C11	-155.5 (3)
C10—C8—N4—C6	-177.8 (3)	N4—Mn1—O3—C11	114.6 (3)
N5—C8—N4—Mn1	-173.4 (2)	N2—Mn1—O3—C11	-65.2 (3)
C10—C8—N4—Mn1	8.3 (5)	N8—C14—O4—Mn1	177.9 (3)
C7—C6—N4—C8	-0.2 (4)	O1—Mn1—O4—C14	117.2 (4)

C7—C6—N4—Mn1 O1—Mn1—N4—C8 O2—Mn1—N4—C8 O4—Mn1—N4—C8	173.1 (2) 168.6 (3) -8.1 (3) -100.3 (3)	O2—Mn1—O4—C14 N4—Mn1—O4—C14 N2—Mn1—O4—C14		-62.5 (4) 27.6 (4) -152.7 (4)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
C2—H2····O7 ⁱ	0.93	2.54	3.433 (6)	161	
C5—H5…O7 ⁱⁱ	0.93	2.60	3.402 (6)	145	
C12—H12A…O8 ⁱⁱ	0.96	2.49	3.399 (6)	157	
С13—Н13А…О3	0.96	2.41	2.797 (5)	103	
C13—H13C····O5 ⁱⁱⁱ	0.96	2.40	3.261 (7)	150	
C14—H14…O6	0.93	2.59	3.477 (6)	161	
Symmetry codes: (i) $x-1$, $y+1$, z ; (ii) x , $y+1$, z ; (iii) $-x+2$, $-y+1$, $-z+2$.					

Fig. 2

